

Contributions

Contextual word embeddings can perpetuate statistically significant biases when applied to clinical notes in downstream tasks.

- BERT pretrained on clinical notes demonstrates statistically significant gender differences in unsupervised sentence completion tasks.
- BERT pretrained on clinical notes results in statistically significant performance gaps when applied to downstream clinical tasks.
- These biases often favor the majority group with regards to gender, language, ethnicity, and insurance status.
- Our paper is available at https://arxiv.org/abs/2003.11515

Motivation

- Non-contextual word embeddings such as word2vec have been shown to capture societal biases in the training corpus (e.g. gender, ethnicity). • Contextual word embeddings such as BERT have been shown to contain
- gender bias on unsupervised tasks in the general domain.
- In a high-stake domain such as clinical notes, do BERT embeddings exhibit bias when qualitatively and quantitatively examined?

[**RACE**] pt became belligerent and violen Prompt: sent to [**TOKEN**] [**TOKEN**] caucasian pt became belligerent and violent SciBERT sent to hospital . white pt became belligerent and violent . se to **hospital** african pt became belligerent and violent . sent to **prison** african american pt became belligerent and violent . sent to prison . black pt became belligerent and violent . so to **prison** .

Group Fairness Definitions

- Demographic parity:
- Definition: $P(\hat{Y} = \hat{y}) = P(\hat{Y} = \hat{y}|Z = z)$
- Metric: $\left|\left(\frac{TP_z + FP_z}{N_z}\right)_{z=1} \left(\frac{TP_z + FP_z}{N_z}\right)_{z=0}\right|$
- Positive Equality:
- Definition: $P(\hat{Y} = 1 | Y = 1) = P(\hat{Y} = 1 | Y = 1, Z = z)$
- Metric: $\left| \left(\frac{TP_z}{TP_z + FN_z} \right)_{z=1} \left(\frac{TP_z}{TP_z + FN_z} \right)_{z=0} \right|$
- Negative Equality:
- Definition: $P(\hat{Y} = 0 | Y = 0) = P(\hat{Y} = 0 | Y = 0, Z = z)$
- Metric: $\left| \left(\frac{TN_z}{TN_z + FP_z} \right)_{z=1} \left(\frac{TN_z}{TN_z + FP_z} \right)_{z=0} \right|$
- Multi-group Fairness Expansion:
- $i_i^* = \operatorname{argmax}_{i \in z} |m_j m_i|$
- $gap_j = m_j m_i$

Relevant Prior Work

- Chen et al. "Why is my classifier discriminatory?" (2018)
- Kurita et al. "Measuring Bias in Contextualized Word Representations." (2019)
- Beutel et al. "Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations" (2017)
- Elazar and Goldberg. "Adversarial Removal of Demographic Attributes from Text Data" (2018)

Hurtful Words: Quantifying Biases in Clinical Contextual Word Embeddings

Haoran Zhang^{*1,2}, Amy X. Lu^{*1,2}, Mohamed Abdalla^{1,2}, Matthew McDermott³, Marzyeh Ghassemi^{1,2}

*Equal Contribution ¹University of Toronto ²Vector Institute ³MIT

MIMIC-III • MIMIC-III consists of EHR records for 38,597 adults admitted to the ICU of the Beth Israel Deconess Medical Center between 2001 and 2012. • Contains 2 million clinical notes of varying types. • Contains patient demographic information such as gender, insurance status, and *self-reported* ethnicity and language spoken. • 58.7% male, 80.2% white, 88.5% English speakers, 56.1% medicare. BERT Pretraining ("Clinical BERT") • Initialized from SciBERT, which is pretrained on biomedical text. • Used all notes except outpatient notes. • Trained for one epoch (\approx 8 million samples) on sequences of length 128, then one epoch (\approx 4 million samples) on sequences of length 512. is next sentence? $H_{1}^{A} \parallel H_{2}^{A}$ H_[CLS] E_[CLS] E^A_{"51"} E^A_{"yo"} E_[MASK] E^B."den" I E Embedding [SEP] A Log Probability Scores Proposed by (Kurita et al., 2019) • Given a fill-in-the-blanks prediction task, is there a statistically significant difference between the likelihood of predicting male vs. female gendered pronouns?

Sample Template: [GEND] has a pmh of [ATTR] $p([GEND] = "he") = p_{prior}$ $p([GEND] = "he" | [ATTR] = "hiv") = p_{target}$ $score = \log \frac{p_{target}}{p_{prior}}$

• Came up with templates relating to 8 clinical categories • Tested on SciBERT and Clinical BERT

Downstream Tasks

- **57** binary classification problems.
- In-hospital Mortality: Using the first 48 hours of a patient's notes, predict whether they will die in hospital.
- Phenotyping using all notes: Using all notes, predict patient membership in one of 25 HCUP CCS code groups. Also considers any acute phenotype, any chronic phenotype, and any defined disease.
- Phenotyping using first note: Similar to the previous tasks, except only using the first nursing or physician note.

nt.	
:.	
ent	
sent	

Log Probability Score Results

Lee Drebehility Dies Seeres						
			robabili EDT			
		SCIBERI		Clinical BERI		Gender Ratio
		M	F	M	F	(M, F)
ŀ	Addiction	0.202	0.313	0.021*	-0.515*	57.4%, 42.6%
ŀ	Heart Disease	0.204*	0.333*	0.264*	-0.352*	58.7%, 41.3%
	Diabetes	0.100	0.251	0.205*	-0.865*	56.3%, 43.7%
	ONR	0.070	0.032	-0.636*	-1.357*	51.9%, 48.1%
ŀ	Analgesics	1.295	2.127	-0.077	0.105	56.9%, 43.1%
ŀ	HIV	0.129	0.317	0.616*	-1.247*	64.6%, 35.4%
ŀ	Hypertension	0.413	0.437	0.440*	-0.402*	55.8%, 44.2%
	Mental Illness	-0.414*	-0.164*	0.084*	-0.263*	48.4%, 51.6%

*Denotes statistically significant difference between male and female at p < 0.01

Takeaway:

- prevalence in the training data.
- biological expectations (ex: hypertension).

Downstream Task Results

Significant performance gaps (% of tasks favoring first group):

		Significant	Differences	by Fairness Definition
		Recall Gap	Parity Gap	Specificity Gap
Gender	Male vs. Female	13 (62%)	25 (36%)	20 (80%)
Language English vs. Other		7 (29%)	17 (12%)	9 (89%)
Ethnicity	White vs. Other	4 (75%)	22 (82%)	12 (17%)
	Black vs. Other	5 (20%)	18 (72%)	11 (18%)
	Hispanic vs. Other	7 (0%)	18 (0%)	20 (100%)
	Asian vs. Other	8 (62%)	7 (100%)	8 (50%)
	"Other" vs. Other	10 (0%)	8 (0%)	9 (100%)
Insurance	Medicare vs. Other	33 (85%)	51 (92%)	48 (6%)
	Private vs. Other	15 (7%)	41 (2%)	40 (98%)
	Medicaid vs. Other	20 (20%)	31 (19%)	30 (83%)

Takeaway: Many statistically significant performance gaps exist, mostly favoring the majority group.

Attempt at Debiasing

- the first and second sequences, respectively.
- information in the representations.

Takeaway: Adversarial debiasing during pretraining does not greatly reduce the number of performance gaps compared to the baseline Clinical BERT model.

Published in ACM CHIL 2020

• Pretraining on clinical notes shifts model predictions towards the gender

• These associations could be useful, but also might be spurious and exceed

• Applies techniques from previous work on adversarial debiasing (Beutel et al.). • Attached two adversarial heads to the [CLS] token output, to predict gender of

• During training, gradients of the adversary are reversed, to obfuscate gender

```
Significant Gap Count (% Favoring Male)
Model Parity Gap Recall Gap Specificity Gap
                13 (62%) 20 (80%)
                9 (56%) 20 (70%)
```