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Experimental Flow

Our Contributions

We investigate a causal data augmentation technique for removing confounding bias / — _ Dataset T " U—=1 U=0 U D :
during pretraining on synthetic and semi-synthetic data. 1. Data Acquisition Scenario atase arse — — nseen omain
| CelebA Gender Rotate 90° No Transform N/A
o We extend causal bootstrapping (Little and Badawy, 2020) to five practical confounded-data NIH Presence of Atelectasis Rotate 90° No Transform N/A
generation sc.enaric?s:. | | | I N U =2 NS A Camelyonl7 Presence of Tumor Hospital 3 Hospital 4 Hospital b
o We compare its ab.lllty to remove confounding bias thh other non-causal data augmentation schemes . ® s ® PovertyMap Asset Wealth Malawi, Tanzania Kenya, Nigeria 19 Other Countries
on five datasets with synthesized and real-world shifts. C O Q MIMIC-CXP Presence of Atelectasis MIMIC-CXR ~ CheXpert NIH
e We demonstrate benefits of the proposed pre-training method to train models that generalize to a) Observed Bias D) OPserved Bias c) Partially Observed d) Unobserved Bias ¢) Biased Care
with Mediator Bias with Mediator with Mediator

reverse-confounded and unseen test environments, providing evidence that such methods help deep
networks rely on generalizable associations in the data as opposed to spurious ones.

Paper: https://arxiv.org/abs/2108.12510

Code: https://github.com/MLforHealth/CausalDA ﬁMethod
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Results - Performance

MIMIC-CXP: predicting atelectasis from chest x-rays, with the hospital as the confounding bias.

Observed Obs. with Medlator Unobs. with Medlator Biased Care

a) Causal Bootstrapping (CB): Resampling data based on causal information. Uses sampled data X to predict Y. 1.0 1.0
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Background: Shortcut Learning
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Algorithm 1 Causal bootstrapping for De-biasing data for classification 0.6
for graphs G in Fig. (1) 0.4

AUC

e Machine learning models often rely on “shortcut” biases to achieve good predictive performance.
e Such models experience a degradation in performance under changes in the spurious correlation.

0.4/ 0.4/

—— Simple
0.2] 0.2] 0.2 e CB
. 1: Input: G, X € Q. Y. € Qy = {c{,Co,...Cxr },
Tralnlng 2:- 0 Pt tgx conf Y X Conf Y { b K} 00555 0.75 0.85 005 %65 0.75 0.85 005 %65 0.75 0.85 0.05 22065 0.75 0.85 0.95 ”
* u pu * deCOI’lf3 dBCOI’lf Correlation (q¢) Correlation (q¢) Correlation (q) Correlation (q¢)
3: Additional CB inputs: Z ., r, D¢on £, and/or U, r, as observed. @ ) (C) @
4: Find interventional distribution P(x | do(y)) using do-calculus. Setting Test Data DA IF Simple
5. if P(x | do is identifiable from G then Unconf 0.743 +£0.011 0.593+0.003 | 0.581 4 0.020 o 730 +0.017
‘. f(orl _(320 G Obs. U (a) Reverse 0.756 + 0.005 0.075 +0.004 [ 0218 0,001 1+ 0.018 [ "2*?Y 0.728 + 0.012 [ 0-00?
‘ y= Unseen  0.746 = 0.005 N /A 0.643 + 0.036 0.740 + 0.012
7: forn € N do Unconf  0.748 + 0.004 0.8934+0.009 g 0590+£0019] .5 0745+0.008
8: Compute w,, from Eq. (18) Obs. U with Z (b) Reverse 0.758 & 0.004 0.665 +0.025 [ °7" 0.171 £ 0.034 0.756 + 0.009
9 end for Unseen 0.749 + 0.006 N /A 0.654 + 0.044 0.743 4 0.008
10: Sample | N = ¢)| samples from Qx, sampling x,, with probabilit Unconf  IN/A 0.893 4 0.009 | _ 0.590 =+ 0.019 0.736 = 0.005
P I' Py )] P X PHNG Xn P y Unobs. U with Z (d) Reverse N/A 0.665 + 0.025 0.228 0.171 £0.034 -0.419 0.739 £ 0.010
wn(c) Unseen N/A N/A 0.654 + 0.044 0.740 =+ 0.008
This can be viewed as a form of confounding bias. 11: For sampled x;,, set y, =c Obs. U with Unconf  0.745 + 0.005 0.718 £0.015| o o, 0.578£0.016 | o 0.736 % 0.006
12: end for bincnd care () Reverse 0.759 + 0.008 0.193£0.033 [ 777 0.097 £ 0.019 0.742 £ 0.015
confound 13: else Unseen 0.746 =+ 0.006 N /A 0.636 + 0.034 0.740 4= 0.003
onfounding
14: FAIL
15: end if Takeaways:

e Models trained on confounded data exhibit large degradations in performance when the
confounding bias is reversed.

e (B effectively deconfounds data to learn models that do not rely on confounding bias.

e The DA models perform comparably well, though they cannot be applied when the confounding
is not fully observed.
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Problem Setup

We can construct robust machine learning models using causality.

L <4

Observed Training Desired Distribution

b) Data Augmentation (DA): Adds data points based on known confounding.

c) Simple: Uses selected predictive data X to predict Y.

anformative Features (IF): Use all available measured features (X, Z, U, D) to predict Y.

Results - Performance Gaps
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Takeaways:

0.4 - e CB models do not depend on spurious

istribufi In causal ferms: i ifF
Distribution (InTerven’rionol) ¥ A A s 5 03. correlations regardless of task difficulty.
4 , ‘ . | (] N L & = L i - 2 B L b B b e ' _
| | - | | - - — J U LN SN AN\ e Models trained on confounded data are
Goal: Given samples from observational distribution, how can we simulate samples from the intervention: a) g?rr;on?:;ed b) Unconfounded goli?gf;zgd d) Unseen 0.2 - more prone to confounding for tasks where

0.1- the invariant correlation is weaker.
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Performance Gap (AUROC; Unconf — Revconf)

. /

A model that has not learnt on confounding bias should perform well across all evaluation scenarios.
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